Density Clustering Based SVM and Its Application to Polyadenylation Signals∗
نویسندگان
چکیده
Support vector machines (SVM) have been promising methods for classification analysis due to their solid mathematical foundations. Clustering-based SVMs are used to solve large samples classification problems and reduce the computational cost. In this paper, we present a density clustering based SVM(DCB-SVM) method to predict polyadenylation signal (PAS) in human DNA and mRNA sequences. We decrease the original data scale by using the density restricted hierarchical clustering. This strategy leads to solving smaller sized problems, making DCB-SVM work faster than standard SVM. According to the results of the PAS experiment, the proposed method is not only fast, but also shows better improvement in sensitivity than the SVM.
منابع مشابه
Detection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods
Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...
متن کاملDetection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods
Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملEpileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier
Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...
متن کاملAn Emotion Recognition Approach based on Wavelet Transform and Second-Order Difference Plot of ECG
Emotion, as a psychophysiological state, plays an important role in human communications and daily life. Emotion studies related to the physiological signals are recently the subject of many researches. In This study a hybrid feature based approach was proposed to examine affective states. To this effect, Electrocardiogram (ECG) signals of 47 students were recorded using pictorial emotion elici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009